Chromatin modifications and the DNA damage response to ionizing radiation
نویسندگان
چکیده
In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.
منابع مشابه
Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks
Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of t...
متن کاملVRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage
All types of DNA damage cause a local alteration and relaxation of chromatin structure. Sensing and reacting to this initial chromatin alteration is a necessary trigger for any type of DNA damage response (DDR). In this context, chromatin kinases are likely candidates to participate in detection and reaction to a locally altered chromatin as a consequence of DNA damage and, thus, initiate the a...
متن کاملTRIM29 regulates the assembly of DNA repair proteins into damaged chromatin.
Although DNA double-strand break (DSB) repair is mediated by numerous proteins accumulated at DSB sites, how DNA repair proteins are assembled into damaged chromatin has not been fully elucidated. Here we show that a member of the tripartite motif protein family, TRIM29, is a histone-binding protein responsible for DNA damage response (DDR). We found that TRIM29 interacts with BRCA1-associated ...
متن کاملChromatin remodeling finds its place in the DNA double-strand break response
The accurate repair of chromosomal double-strand breaks (DSBs) arising from exposure to exogenous agents, such as ionizing radiation (IR) and radiomimetic drugs is crucial in maintaining genomic integrity, cellular viability and the prevention of tumorigenesis. Eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs. The DNA DSB response is facilitated by hierarchical ...
متن کاملReduced DNA damage in tumor spheroids compared to monolayer cultures exposed to ionizing radiation
Background: Several cell lines when cultured under proper condition can form three dimensional structures called multicellular tumor spheroids. Tumor spheroids are valuable in vitro models for studying physical and biological behavior of real tumors. A number of previous studies using a variety of techniques have shown no relationship between radiosensitivity and DNA strand breaks in monolayer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012